一、教學設計理念說明:
學生在七年級已習得一元一次方程式與二元一次聯立方程式的應用問題解法,八年級上學期亦學習一元二次方程式的相關應用問題,基本已完整習得國中階段「方程式與應用問題」的概念與解法。然而,礙於各應用問題皆分散於各個不同單元,學生慣於使用該單元的「幾元幾次」,抑或說是被單元給綁架,而忽略分析題目的「未知」與思考題目的「方程」。因此,為了強化學生的思考,擴展思考的面向,設計本堂課程,強化學生分析能力,刺激學生腦細胞的活化。
二、教學單元設計:
主題名稱 |
年齡問題 |
設計者 |
楊濟駿 |
|||||||||||||||||
課程類別 |
□ 統整性探究課程 □ 社團活動與技藝課程 □ 特殊需求領域課程 ■ 其他 |
實施年級 |
八年級 |
|||||||||||||||||
實施週次 |
1週 |
|||||||||||||||||||
教學節數 |
1節 |
|||||||||||||||||||
教材來源 |
百分百講義、學習單 |
|||||||||||||||||||
核心素養 |
總綱核心素養 |
領綱/科目核心素養 |
呼應核心素養之教學重點 |
|||||||||||||||||
A1 身心素質與自我精進 B1 符號運用與溝通表達 |
數-J-A1 對於學習數學有 信心和正向態度,能使用適當的數學語言進行溝通,並能將所學應用於日常生活中。 數-J-B1 具備處理代數與 幾何中數學關係的能力,並用以描述情境中的現 象。 |
A1-1 學生對於生活中的應用問題,需能分析問題中的未知,並選用適當地數學語言進行解題。 B1-1 學生能對應用問題選用合適地「幾元幾次方程式」,亦訓練學生進行一題多解,能從題目中思考對應的方程式。 |
||||||||||||||||||
領綱 |
(1)
學習表現 a-IV-1 理解並應用符號及文字敘述表達概念、運算、推理及證明。 |
|||||||||||||||||||
(2)
學習內容 A-7-3 一元一次方程式的解法與應用:等量公理;移項法則;驗算;應用問題。 A-7-5 二元一次聯立方程式的解法與應用:代入消去法;加減消去法;應用問題。 |
||||||||||||||||||||
(3)
學習目標 閱讀並理解題目的能力:對於應用問題的敘述,學生能夠閱讀敘述,並理解其文字與數學符號的轉換。 分析與擬定策略的能力:理解題意後,學生能嘗試分析題目的「未知」與「已知」,並擬定適當的策略與相符應的方程式。 嘗試錯誤與修正的能力:若發現擬定的策略不易「依題意列式」,或是選用過多的未知數以致無法合理列式,學生需能改變想法,修正並嘗試其他策略。 |
||||||||||||||||||||
融入議題 具體內涵 |
⬜ 性別平等教育 |
⬜ 人權教育 |
⬜ 環境教育 |
⬜ 海洋教育 |
⬜ 品德教育 |
|||||||||||||||
⬜ 多元文化教育 |
⬜ 法治教育 |
⬜ 科技教育 |
⬜ 資訊教育 |
⬜ 能源教育 |
||||||||||||||||
⬜ 性侵害防治 |
⬜ 防災教育 |
▓ 閱讀素養 |
▓ 生命教育 |
⬜ 家庭教育 |
||||||||||||||||
⬜ 生涯規劃教育 |
⬜ 安全教育 |
⬜ 戶外教育 |
⬜ 國際教育 |
⬜ 家暴防治 |
||||||||||||||||
⬜ 原住民教育 |
▓ 母語教育 |
|
|
|
||||||||||||||||
教具設備 |
百分百數學講義、筆記本、補充資料 |
|||||||||||||||||||
教學活動內容及實施方式 |
時間 |
備註 |
||||||||||||||||||
第一節:《年齡問題》 一、課前準備: (一)先對年齡應用問題,事先思考多種不同的解法,包含「一元一次」及「二元一次」方程式的解法。 二、引起動機: 先由講義中父親與兒子對話的漫畫,引發學生思考對話中的「未知」與「數學概念」。每位學生解讀對話的方式不同,可能思考出不同的未知數個數。然而,列出未知數後,又如何依題意列式,便是本題的關鍵。透過引導與對話,帶領學生一同思考年齡問題的關鍵。
三、主要內容/活動: 【活動一:閱讀題目並從中畫出數學概念】 從父親與兒子的簡單對話中,嘗試圈出「未知」的部分,並畫線找到句子中「等號」與「已知」的部分。擅用閱讀策略,畫線並圈出關鍵字,帶領學生閱讀題目並分析題目的未知與已知。 【活動二:畫出年齡數線圖,並標示過去、現在、未來的年紀】 透過年齡數線圖,引導學生在這段對話中,共有六個年齡與其相對位置,這些年齡在對話中又對應哪些數字,哪些是「已知」?哪些又是「未知」?再者,透過引導學生思考,「我在你這個年紀⋯⋯」及「你在我這個年紀⋯⋯」其邏輯與數學概念,帶領學生思考六個年齡中,哪些位置所表示的是相同的數值。
【活動三:依題意列式】 不論是利用「一元一次方程式」或是「二元一次方程式」,其中關鍵的「依題意列式」,皆為題目中最核心的部分。而本題與過往學生的經驗較為不同,題意中沒有出現的「兩人年紀和為多少」、「兩人年紀差為多少」,或是「父親的年齡是兒子的兩倍」等常見容易找到等式的句子。而是要透過年齡數線圖,分析過去、現在與未來的關係,需有清晰的邏輯性與數學概念,引導學生導出關鍵的式子。活絡學生的思考力,能透過一題多解的方式,求出答案。 <解法一> 假設兒子現年x歲。 <解法二> 假設父親與兒子相差x歲。 <解法三> 假設兒子現年x歲、父親現年y歲。 【活動四:相似類題練習】 給予學生相似的類題,並模仿相同的方式。用兩種方法求出答案。 <類題一> 數學課時,小新問老師的年紀。老師神回:「我在你這個年紀時,你只有2歲;等你到我這個年紀時,我就65歲。」試問老師今年幾歲? <類題二> 瓜哥對浩子說:「我在你這個年紀的時候,你只有3歲;等你到我這個年紀的時候,我就75歲了。」試問瓜哥與浩子現年各幾歲? 四、總結活動/評量: 總歸,不管是利用一元一次方程式或二元一次聯立方程式,並無所謂的好與壞,而是要分析題意,進而能夠「依題意列式」,列出關鍵且正確的算式。學生更該懂的是,根據自己假設的未知數,列出符應的方程式,才能真正的理解「應用問題」與「方程式」的精髓。不再是問老師說,「這題要假設什麼為未知數?」 |
5mins 5mins 8mins 15mins 10mins 2mins |
|
||||||||||||||||||
評量方式 |
學習單撰寫、 學生討論互動、心得發表 |
|
||||||||||||||||||
三、參考資料
- 百分百EZ數學複習講義-南一書局
- 點線面全方位評量講義第一冊-南一書局
- 點線面全方位評量講義第二冊-南一書局
四、附錄
- 學習單-類題與回家作業
<類題一> 數學課時,小新問老師的年紀。老師神回:「我在你這個年紀時,你只有2歲;等你到我這個年紀時,我就65歲。」試問老師今年幾歲?
|
|||
<類題二> 瓜哥對浩子說:「我在你這個年紀的時候,你只有3歲;等你到我這個年紀的時候,我就75歲了。」試問瓜哥與浩子現年各幾歲? |
|||
<回家練習> 張老師對小玲說:「我在你這個年紀時,你只有11歲;等你到我這個年紀的時候,我就53歲。」試問張老師今年幾歲? |
沒有留言:
張貼留言